中心邮箱   |   学校主页   |   英文
当前位置: 首页 > 科学研究 > 发表论文 > 正文
2020年发表论文
发布时间:2020-12-30  


郭真华

1. Jan Muhammad, Li Fang, Zhenhua Guo, Global weak solutions to a class of compressible non-Newtonian fluids with vacuum. Mathematical Methods in the Applied Sciences 43 (2020)5234–5249.

2. Huan Zhu, Li Fang, Jan Muhammad, Zhenhua Guo, Global weak solutions to a Vlasov-Fokker-Planck/compressible non-Newtonian fluid system of equations. ZAMM. Zeitschrift für Angewandte Mathematik und Mechanik 100 (2020) 20 pp.

3. Zhenhua Guo, Qingyan LiGlobal existence and large time behaviors of the solutions to the full incompressible Navier-Stokes equations with temperature-dependent coefficientsJournal of Differential Equationshttps://doi.org/10.1016/j.jde.2020.10.031


桂贵龙

1. Guilonggui, Lagrangian Approach to Global Well-Posedness of the Viscous Surface Wave Equations Without Surface Tension


康静

1. Jing Kang , X.C. Liu, P. J.Olver, C.Z. Qu,   Liouville correspondence between

multicomponent  integrable hierarchies,   Theoretical and Mathematical Physics, 204(1): 843-874 ( 2020).


付英

1. Haiquan Wang, Ying Fu*, A note on the Cauchy problem for the periodic two-component Novikov system, Applicable Analysis, 2020, 99(6): 1042-1065.

2. Haiquan Wang*, Gezi Chong, On the initial value problem for the two-coupled Camassa–Holm system in Besov spaces, Monatshefte für Mathematik , 2020, 193(2): 479-505.

3. Changzheng Qu*, Ying Fu, On Cauchy problem and peakons of a two-component Novikov system, SCIENCE CHINA Mathematics, 2020,63(10): 1965-1996. Yingying Li, Ying Fu, Changzheng Qu*, The two-component $\mu$- Camassa--Holm system with peaked solutions, Discrete and Continuous Dynamical Systems - Series A, 2020, 40(10): 5929-5954.

4. Changzheng Qu, Ying Fu*, Curvature blow-up for the higher-order Camassa-Holm equations, Journal of Dynamics and Differential Equations, 2020, 32(4): 1901-1939.


王丽真

1. 杨莹,王丽真,时空分数阶多孔介质类型方程的对称分析,西北大学学报(自然科学版),501)(202088-92.

2. 侯婕, 王丽真,不变子空间方法在时空分数阶偏微分方程中的应用,西北大学学报(自然科学版),501)(202084-87.

3. Ying Yang, Lizhen Wang, Lie symmetry analysis, conservation laws and separation variable type solutions of the time fractional Porous Medium equation, accepted by Waves in Random and Complex Media, 2020.


姚磊

1. Yinghui Wang, Huanyao Wen, Lei Yao, On a non-conservative compressible two-fluid model in a bounded domain: Global existence and uniqueness, J. Math. Fluid Mech.,

https://doi.org/10.1007/s00021-020-00531-5

2. Su Yunfei, Yao Lei*, Hydrodynamic limit for inhomogeneous incompressible Navier-Stokes/Vlasov-Fokker-Planck equations, J. Differential Equations, 269(2020), 1079-1116.

3. Haibo Cui, Junpei Gao, Lei Yao, Asymptotic behavior of the one-dimensional compressible micropolar fluid model, Electron. Res. Arch., https://dx.doi.org/10.3934/era.2020105

4. Cui  Haibo, Wang, Wenjun*, Yao Lei, Asymptotic analysis for 1D compressible Navier-

Stokes-Vlasov equations. Commun. Pure Appl. Anal.,19(2020), 2737-2750.


张顺利

1. Ruichao RenShunli ZhangInvariant analysis, conservation laws, and some exact solutions for (2+1)-dimension fractional long-wave dispersive systemComputational and Applied Mathematics  392020249

2. Ruichao RenShunli ZhangWeiguo RuiApplications of Homogenous Balance Principles Combined with Fractional Calculus Approach and Separate Variable Method on Investigating Exact Solutions to Multidimensional Fractional Nonlinear PDEsMathematical Problems in Engineering20209101982


黄晴

1. A.P. Fordy and Q. Huang, Superintegrable systems on 3 dimensional conformally flat spaces, J. Geom. Phys. 153 (2020) 103687, 27 pages.

2. Q. Huang and R. Zhdanov, Realizations of the Witt and Virasoro algebras and integrable equations, J. Nonlinear Math. Phy., 2020, 27: 36-56.


方莉

1. Zhu, Huan; Fang, Li; Muhammad, Jan; Guo, Zhenhua Global weak solutions to a Vlasov-Fokker-Planck/compressible non-Newtonian fluid system of equations. ZAMM Z. Angew. Math. Mech. 100 (2020), no. 4, e201900091, 20 pp.

2. Muhammad, Jan; Fang, Li; Guo, Zhenhua Global weak solutions to a class of compressible non-Newtonian fluids with vacuum. Math. Methods Appl. Sci. 43 (2020), no. 8, 5234–5249.


王冬岭

1. Wang, Dongling, Aiguo Xiao, and Jun Zou. "Long-time behavior of numerical solutions to nonlinear fractional ODEs.” ESAIM: Mathematical Model and Numerical Analysis, 54 (2020) 335–358.

2. Daijun Jiang, Yikan Liu,   Dongling Wang, Numerical reconstruction of the spatial component in the source term of a time-fractional diffusion equation, Advance in Computational  Mathematics, (2020) 46:43.

3 Bianru Cheng, Dongling Wang , Wei Yang,  Energy preserving relaxation method for space-fractional nonlinear Schrödinger equation, Applied Numerical Mathematics 152 (2020) 480–498


李志夙

1. Dongsheng Li*, Zhisu Li*, Yu Yuan*, A Bernstein problem for special Lagrangian equations in exterior domains. Advances in Mathematics, 361 (2020) 106927 (https://doi.org/10.1016/j.aim.2019.106927) (1--29).

2. Xiaobiao Jia*, Dongsheng Li*, Zhisu Li*, Asymptotic behavior at infinity of solutions of Monge-Amp\`{e}re equations in half spaces. Journal of Differential Equations, 269 (2020) 326--348.



历智明

1. Guo WeiZhiming LiMei cai A Note on the Relation Between Liu’s Uncertain Measure and Choquet CapacityIn book: Statistical and Fuzzy Approaches to Data Processing, with Applications to Econometrics and Other Areas.

2. Zhiming LiYujun ZhuEntropies of commuting transformations on Hilbert spacesDiscrete and Continuous Dynamical SystemsOctober  2020, 40(10): 5795-5814.

3. Zhiming LiYujun Zhu, Preimage pressure, stable pressure and equilibrium states, Journal of Differential Equations, Volume 269, Issue 7, 15 September 2020, Pages 6311-6342.

4. Dingxuan TangZhiming Li, A Remark on Stochastic Flows in a Hilbert Space, Journal of Dynamical and Control Systems, J. Dyn. Control Syst. 26 (2020), no. 4, 775–783.

5. Dandan ChengZhiming Li,  Mean dimensions for partial actions

Journal of  Difference Equations and Applications. Volume 26, 2020 - Issue 4, Pages 561-573.

6. Dingxuan TangZhiming Li, A REMARK ON ENTROPIES OF NONCOMPACT SYSTEMS, ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, Volume 50 (2020), No. 3, 1109–1114.

7. Tang, Dingxuan; Wu, Haiyan; Li, Zhiming Weighted upper metric mean dimension for amenable group actions. Dyn. Syst. 35 (2020), no. 3, 382–397.


侯江勇

1. Jiangyong Hou, Wenjing Yan, Dan Hu and Zhengkang He, Robin-Robin domain decomposition methods for the dual-porosity-conduit systemAdvance in Computational Mathematics,  2020-11 接收 (还未在线刊出,故没有带杂志社的正式PDF版)


刘俊荣

1. Junrong Liu*, Qihong Duan, Wen-Xiu Ma, The evolution of a clogging sidewalk caused by a dockless bicycle-sharing system: A stochastic particles model, Mathematics and Computers in Simulation, 177 (2020), 516-526.  

2. Qihong Duan, Junrong Liu*, Filtering and smoothing formulas of AR(p)- modulated Poisson processes, Communications in Statistics - Simulation and Computation, 49:6 (2020), 1575-1591.

3. 刘俊荣,邵勇,基于Cramer法则计算矩阵的特征向量,大学数学,2020,第36卷,第4期,78-81.


孙宜民

1. Guowei Dai, Yimin Sun, Zhiqiang Wang, Zhitao ZhangThe structure of positive solutions for a Schrodinger systemTopological Methods in Nonlinear Analysis, 2020, 55 (1): 343-367.


魏巍

1. Xiang Ji, Yanqing Wang, Wei WeiNew regularity criteria based on pressure or gradient of velocity in Lorentz spaces for the 3D Navier-Stokes equations Journal of Mathematical Fluid Mechanics 22 (2020) , no. 1, Art. 13, 8 pp.

2. Yanqing Wang, Wei WeiHuan Yu,ε-Regularity criteria for the 3D Navier-Stokes equations in Lorentz spaces published online in Journal of Evolution Equations (2020)  DOI: 10.1007/s00028-020-00643-5


左苏丽

1. Bianru Cheng, Zhenhua Guo, Dongling WangDissipativity of semilinear time fractional subdiffusion equations and numerical approximations Applied Mathematics Letters 86 (2018) 276–283