主讲人:李维喜 副教授
单位:武汉大学
时间:2015年4月20日(星期一)上午10:30-11:30
地点:西北大学太白校区非线性科学研究中心学术报告厅
报告摘要: In this talk we study Gevrey
smoothing effects for Prandtl equation, and for given initial data which lies
in some kind Sobolev space, we prove that any local solution, once exists in
Sobolev space, will belong to some Gevrey space at positive time,
provided the Oleinik’s monotonicity assumption is fulfilled. Although it
is a degenerate equation in tangential direction, we explore the intrinsic
subelliptic structure due to the mononicity condition for Prandtl equation. By
virtue of a global weighted subelliptic esimate, we obtain accordingly the
Gevrey regulariy up to the boundary.
报告人简介:李维喜,武汉大学副教授,国家自然科学基金优秀青年基金获得者;主要研究方向为偏微分方程、调和分析;2008年在武汉大学获得博士学位,其后先后在University Paris VI、Lund University、Université de Nante、University of Bologna 作博士后研究;已在 Advances in Mathematics、Ann. Sc. Norm. Super. Pisa
Cl. Sci.、Comm.
Partial Differential Equations、Kyoto
Journal of Mathematics 等顶级期刊上发表学术论文多篇;作为负责人先后主持国家自然科学基金3项。
欢迎广大师生参加!