报告人:杨敏波副教授
单位:浙江师范大学
报告时间:2017年5月26日(周五)下午 3:00
报告地点:非线性科学研究中心报告厅
摘要: We consider the
following Choquard equation:
\begin{equation}\label{ME}\begin{array}{l}\displaystyle -\Delta u+V(x)u=(|x|^{-1}\ast|u|^p)|u|^{p-2}u,
\ \ \hbox{in}\ \
\mathbb{R}\times\mathbb{R}^N,\end{array}\end{equation}where $V(x)$ is a
real valued function and $*$ stands for the convolution, $p$ lies in some
suitable range. This equation has been used to model a lot of physical
phenomena. For instance, it can be considered as a classical limit of the field
equations describing a quantum mechanical non-relativistic system with many
bosons. In this talk, I will introduce
some results for the critical Choquard equation in the sense of
Hardy-Littlewood-Sobolev inequality.
欢迎各位师生的参加!